
Accelerate LLM inference with
Asynchronous model offload

Jie Ye Bogdan Nicolae Xian-He Sun Anthony Kougkas
jye20@hawk.iit.edu, bnicolae@anl.gov, sun@iit.edu, and akougkas@iit.edu

Introduction

Large language models (LLMs) have demonstrated their effec-
tiveness across diverse generation and data management tasks.
Modern LLMs typically come with tens to hundreds of billions
of parameters, such as Llama-3.3-70B-Instruct, GPT-3 175 bil-
lion parameters, and Llama-3.1-405B. Moreover, once trained,
the models must be deployed to handle requests with varying
prompt lengths from numerous concurrent users. As a result,
serving and deploying these models demands hundreds of gi-
gabytes of memory, which far exceeds the memory capacity of
modern GPUs like NVIDIA A100. Therefore, with the fast growth
of the parameter size, it becomes increasingly challenging to de-
ploy these models, especially in environments with limited mem-
ory.
A common approach to overcome memory constraints is to of-
fload some model parameters to host memory and load them
back to GPU memory on-demand during inference. Existing
vLLM proposes a naive offloading mechanism that offloads lay-
ers starting from block 0 and fetches the blocks synchronously
right before performing the computation of that layer. These in-
efficient data and synchronous data transfers between the GPU
and host memory can introduce bottlenecks, severely degrading
inference performance.

Our Approach

Storage (model weights)

Storage (model weights)

T_Block_1Compute

Data Movement
(Stream X)

H2D_TB_4 H2D_TB_8 H2D_TB_12

T_Block_2 T_Block_3 T_Block_4 T_Block_5 T_Block_6 T_Block_7 T_Block_8 T_Block_9 T_Block_10 T_Block_12T_Block_11 T_Block_14T_Block_13 T_Block_16T_Block_15

H2D_TB_16

GPU Memory
Dynamic GPU Buffer

Slot 0 Slot 1

Resident GPU Buffers

TB_1 TB_2 TB_3 TB_5 TB_6 TB_7 TB_9 TB_10 TB_11 TB_13 TB_14 TB_15

Host Memory (Pinned Memory)

TB_1 TB_2 TB_3 TB_4 TB_5 TB_6 TB_7 TB_8 TB_9 TB_10 TB_11 TB_12 TB_13 TB_14 TB_15 TB_16

Prefetched Blocks
Resident Blocks

Output
Layer

The 1st
Block fwd

Sync to wait
TB_4 comp

Sync to wait
TB_8 comp

Sync to wait
TB_12 comp

The last
Block fwd

End of Per
Iteration

T_Block_1Compute

Data Movement H2D_TB_1 H2D_TB_2

T_Block_2 T_Block_3 T_Block_4 T_Block_5 T_Block_6 T_Block_7 T_Block_8 T_Block_9 T_Block_10 T_Block_12T_Block_11 T_Block_14T_Block_13 T_Block_16T_Block_15 Output
Layer

GPU Memory
Resident GPU Buffers

TB_3 TB_4 TB_5 TB_6 TB_7 TB_8 TB_9 TB_10 TB_11 TB_12 TB_13 TB_14

Host Memory (Pinned Memory)

TB_1 TB_2
TB_1 TB_15 TB_16

Storage (model weights)

Storage (model weights)

(A) Existing vLLM's offloading Approach

(B) Our Offloading Approach

Offloading interval k=4

Sync to wait
TB_16 comp

Blocks on GPU device

Blocks on Host Memory

H2D Data movement

Figure 3: Comparison of vLLM’s naive model offloading approach vs. Our asynchronous
offloading approach

vLLM’s model Offload Approach:

1. Progressively offloads transformer blocks (0 → N) until
reaching the pre-configured offload memory size

2. Blocking/On-demand fetching: Offloaded blocks are fetched
on-demand before execution, stalling and delaying
computation due to long data movement

Our model Offload Approach:

Offload interval: Selectively offload blocks based on a
pre-configured offload interval k.

Asynchronous Prefetch with a double-buffer: Enables
concurrent computation and data movement by prefetching
upcoming layers in advance, optimizing hardware usage.

Evaluation Method

Platform: ALCF’s Polaris. Each Node: 4◊A100 GPUs with 40
GB HBM2 on each GPU

Models Workloads: Llama-3.1-8B model with LongBench’s
Multi-news dataset (200 requests). The average prompt length
of each request is 2000, and the max output length is 512.

Result: Throughput (Naive vs. Our Approach)

13860.63

15349.87 15355.66

19.88

17.94 17.95

16.5
17
17.5
18
18.5
19
19.5
20
20.5

13000

13500

14000

14500

15000

15500

cpu-offload-gb=5GB k=2 k=3

vLLM's naïve
approach

Our Approach

M
ea

n
TT

FT
 (s

)

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

Llama-3.1-8B with multi-news dataset (Prefill-only)

Figure 4: Throughput and TTFT of Prefill-only: vLLM’s naive method vs. our approach
(gpu_limit=0.8, reqs=200)

899.26
991.33

1220.9

0
200
400
600
800

1000
1200
1400

cpu-offload-gb=5GB k=2 k=3

vLLM's naïve
approach

Our Approach

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

Llama-3.1-8B with multi-news dataset (Prefill-decode)

Figure 5: Throughput of Prefill-decode:
vLLM’s naive method vs. our approach
(gpu_limit=0.8, reqs=200)

50

100

150

200

250

300

350

50

100

150

200

250

cpu-offload-gb=5GB k=2 k=3

vLLM's naïve
approach

Our Approach

M
ea

n
TP

O
T

(m
s)

M
ea

n
TT

FT
 (s

)

Llama-3.1-8B with multi-news dataset (Prefill-decode)

Mean TTFT (s) Mean TPOT(ms)

Figure 6: Latency of Prefill-decode: vLLM’s
naive method vs. our approach
(gpu_limit=0.8, reqs=200)

14.9888

9.82 9.3
11.7412.92

17.68 18.55
16.12

0
2
4
6
8

10
12
14
16
18
20

cpu-offload-gb=5GB k=2 k=3

w/o offload vLLM's naïve approach Our Approach

M
em

or
y

(G
B)

Model weights Free for KV cache

Figure 7: Memory Usage of model weights and max available memory for KV cache:
vLLM’s naive method vs. our approach (gpu_limit=0.8, reqs=200)

Observations:

Compared to vLLM’s built-in offload method, our approach
delivers at least 1.1x higher inference throughput while saving
more GPU memory.

Conclusion

To summarize, we propose a method to selectively offload the
transformer blocks based on the offloading interval k, and asyn-
chronously prefetch the blocks to overlap I/O and computation.
The results show we can achieve higher inference throughput
while saving more GPU memory than the existing approach.

Acknowledgments

This material is based upon work supported in part by the Na-
tional Science Foundation (NSF), Division of Computer and Net-
work Systems (CISE/CNS), under Grant CCRI-CISE 2346504.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Accelerate LLM inference with Asynchronous model o�load
Jie Ye

Illinois Institute of
Technology
Chicago, USA

jye20@hawk.iit.edu

Bogdan Nicolae
Argonne National

Laboratory
Lemont, IL, USA
bnicolae@anl.gov

Xian-He Sun
Illinois Institute of

Technology
Chicago, IL, USA
sun@iit.edu

Anthony Kougkas
Illinois Institute of

Technology
Chicago, IL, USA
akougkas@iit.edu

ABSTRACT
Large language models (LLMs) have shown remarkable capabilities
in various domains but their deployment remains challenging due
to their massive memory requirements. While much research fo-
cuses on scaling pre-training, e�cient inference is equally critical,
particularly under memory constraints. A common solution is of-
�oading model parameters to host memory and fetching them back
during inference. However, existing approaches, like vLLM’s syn-
chronous o�oading, introduce signi�cant latency due to ine�cient
data transfers between GPU and host memory, degrading inference
performance. In this work, we propose a novel o�oading strategy
that (1) selectively o�oads transformer blocks with con�gurable
granularity, enabling �exible memory management, and (2) lever-
ages asynchronous prefetching via a separate CUDA stream to over-
lap I/O and computation, minimizing idle time. Our approach re-
duces inference latency by optimizing data movement, making LLM
deployment more e�cient in memory-constrained environments.

1 INTRODUCTION
Large language models (LLMs) have demonstrated their e�ective-
ness across diverse generation and data management tasks. Modern
LLMs typically comewith tens to hundreds of billions of parameters,
such as Llama-3.3-70B-Instruct [1], GPT-3 175 billion parameters [2],
and Llama-3.1-405B [3]. Pre-training of LLMs and transformers is
known to take weeks if not months even using the powerful HPC
systems. For this reason, a large part of the existing work focuses
on exploring how to scale pre-training. However, inferences are
an equally important problem: once pre-trained, the models must
be deployed to handle requests with varying prompt lengths from
numerous concurrent users. With the fast growth of parameter
sizes, it becomes increasingly challenging to deploy these models,
especially in environments with limited memory, since the memory
demands of the massive number of parameters in modern LLMs
(e.g., hundreds of gigabytes of memory) can easily surpass the mem-
ory capacity of modern GPUs like NVIDIA A100. To mitigate the
memory limitation problem, a common approach is to o�oad part
of the model parameters to host memory and then fetch them back
to GPU memory on demand during inference. For example, the
widely used inference engine vLLM proposes a naive o�oading
mechanism that o�oads layers starting from block 0 and fetches
the blocks synchronously right before performing the computation
of that layer. These ine�cient data and synchronous data trans-
fers between the GPU and host memory can introduce bottlenecks,
severely degrading inference performance.

Conference’17, July 2017, Washington, DC, USA
2025. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Contribution: To reduce the latency caused by data movement,
we propose a novel approach that: (1) selectively o�oads trans-
former blocks based on a con�gurable o�oading interval, easy to
control of the o�oad granularity; (2) can asynchronously prefetch
the o�oaded transformer blocks with a separate CUDA stream to
overlap the I/O and computation during inference.

2 OUR APPROACH
Fig. 1 compares the di�erence between vLLM’s naive o�oading ap-
proach and our asynchronous prefetching and o�oading approach.
vLLM’s built-in model o�oad approach progressively o�oads trans-
former blocks starting from block 0 to block N, and stops o�oading
until reaching the pre-con�gured maximum o�oad memory size.
In a model forward pass, the o�oaded blocks are fetched on de-
mand synchronously right before executing the forward pass of
that block, which stalls and delays the computation due to the long
data movement cost.

Instead of simply o�oading the transformer blocks from block 0
to block N.We provide a con�gurable parameter, o�oading interval
k, and will selectively o�oad blocks based on the o�oading interval.
Here, an o�oading interval of k means that for every k transformer
blocks, the state of the last transformer block is o�oaded to the
Host memory. In addition, we prefetch the o�oaded transformer
blocks asynchronously in advance using a separate CUDA stream
to overlap the I/O and computation. With these two optimizations,
we can accelerate the inference throughput when deploying LLMs
in a GPU memory-constrained environment.

3 EVALUATIONS
3.1 Experimental Setup
All the experiments on the ALCF’s Polaris platform. Each node has
4⇥A100 GPUs with 40 GB HBM2 on each, and 1⇥512 GB DDR4
RAM. We use the Llama-3.1-8B model with vLLM 0.7.0 for infer-
ence on LongBench’s multi-news dataset (200 requests, avg. prompt
length: 2,113, max output: 512).

3.2 Results: Inference Serving Performance and
Memory Analysis

Throughput: Fig. 2 and Fig. 3 presents the inference through-
put when serving 200 requests with the Llama-3.1-8B model with
di�erent model weights o�oading methods. We observe that our
approach can achieve at least 1.1x higher throughput compared
with vLLM’s naive o�oad approach, con�rming that e�cient data
movement can accelerate the inference performance.

Latency: As Fig. 2 and Fig. 4 show, our approach can also get
lower TTFT (i.e., time to �rst token) and TPOT (i.e., time per output
token) compared with vLLM’s vLLM’s naive o�oad approach.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Jie Ye, Bogdan Nicolae, Xian-He Sun, and Anthony Kougkas

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Storage (model weights)

Storage (model weights)

T_Block_1Compute

Data Movement
(Stream X)

H2D_TB_4 H2D_TB_8 H2D_TB_12

T_Block_2 T_Block_3 T_Block_4 T_Block_5 T_Block_6 T_Block_7 T_Block_8 T_Block_9 T_Block_10 T_Block_12T_Block_11 T_Block_14T_Block_13 T_Block_16T_Block_15

H2D_TB_16

GPU Memory
Dynamic GPU Buffer

Slot 0 Slot 1

Resident GPU Buffers

TB_1 TB_2 TB_3 TB_5 TB_6 TB_7 TB_9 TB_10 TB_11 TB_13 TB_14 TB_15

Host Memory (Pinned Memory)

TB_1 TB_2 TB_3 TB_4 TB_5 TB_6 TB_7 TB_8 TB_9 TB_10 TB_11 TB_12 TB_13 TB_14 TB_15 TB_16

Prefetched Blocks
Resident Blocks

Output
Layer

The 1st
Block fwd

Sync to wait
TB_4 comp

Sync to wait
TB_8 comp

Sync to wait
TB_12 comp

The last
Block fwd

End of Per
Iteration

T_Block_1Compute

Data Movement H2D_TB_1 H2D_TB_2

T_Block_2 T_Block_3 T_Block_4 T_Block_5 T_Block_6 T_Block_7 T_Block_8 T_Block_9 T_Block_10 T_Block_12T_Block_11 T_Block_14T_Block_13 T_Block_16T_Block_15 Output
Layer

GPU Memory
Resident GPU Buffers

TB_3 TB_4 TB_5 TB_6 TB_7 TB_8 TB_9 TB_10 TB_11 TB_12 TB_13 TB_14

Host Memory (Pinned Memory)

TB_1 TB_2
TB_1 TB_15 TB_16

Storage (model weights)

Storage (model weights)

(A) Existing vLLM's offloading Approach

(B) Our Offloading Approach

Offloading interval k=4

Sync to wait
TB_16 comp

Blocks on GPU device

Blocks on Host Memory

H2D Data movement

Figure 1: An overview of vLLM’s built-in o�loading approach and our o�loading approach. (a) vLLM’s naive o�loading approach:
o�load transformer blocks from block 0 to block N and synchronously fetch the o�loaded blocks; (b) Our approach: selectively
o�load blocks based on o�loading interval k and asynchronously prefetch the required blocks

13860.63

15349.87 15355.66

19.88

17.94 17.95

16.5
17
17.5
18
18.5
19
19.5
20
20.5

13000

13500

14000

14500

15000

15500

cpu-offload-gb=5GB k=2 k=3

vLLM's naïve
approach

Our Approach

M
ea

n
TT

FT
 (s

)

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

Llama-3.1-8B with multi-news dataset (Prefill-only)

Figure 2: Throughput and Latency of pre�ll-only: vLLM’s
naive method vs. our approach (gpu_limit=0.8, reqs=200)

899.26
991.33

1220.9

0
200
400
600
800

1000
1200
1400

cpu-offload-gb=5GB k=2 k=3

vLLM's naïve
approach

Our Approach

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

Llama-3.1-8B with multi-news dataset (Prefill-decode)

Figure 3: Throughput of pre�ll-decode: vLLM’s naive method
vs. our approach (gpu_limit=0.8, reqs=200)

Memory Analysis: Fig 5 demonstrates the memory usage of
model weights and the maximum free available GPU can be pre-
served for KV cache when using di�erent o�oading methods: with-
out o�oading, vLLM’s built-in o�oading, and our o�oading ap-
proach. The results show that our approach will use less memory
when setting the o�oading interval k = 2.

4 CONCLUSIONS
To summarize, we propose a method to selectively o�oad the
transformer blocks based on the o�oading interval k, and asyn-
chronously prefetch the blocks to overlap I/O and computation. The

50

100

150

200

250

300

350

50

100

150

200

250

cpu-offload-gb=5GB k=2 k=3

vLLM's naïve
approach

Our Approach

M
ea

n
TP

O
T

(m
s)

M
ea

n
TT

FT
 (s

)

Llama-3.1-8B with multi-news dataset (Prefill-decode)

Mean TTFT (s) Mean TPOT(ms)

Figure 4: Latency of pre�ll-decode: vLLM’s naive method vs.
our approach (gpu_limit=0.8, reqs=200)

14.9888

9.82 9.3
11.7412.92

17.68 18.55
16.12

0
2
4
6
8

10
12
14
16
18
20

cpu-offload-gb=5GB k=2 k=3

w/o offload vLLM's naïve approach Our Approach

M
em

or
y

(G
B)

Model weights Free for KV cache

Figure 5: Memory Analysis: Model Weights vs. Maximum
Free Memory for KV Cache with di�erent o�load methods
results show that we can achieve higher inference throughput while
saving more GPU memory compared with the existing approach.

ACKNOWLEDGMENT
This material is based upon work supported in part by the National
Science Foundation (NSF), Division of Computer and Network Sys-
tems (CISE/CNS), under Grant CCRI-CISE 2346504.

REFERENCES
[1] Aaron Gratta�ori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek

Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex
Vaughan, et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783
(2024).

[2] Anis Koubaa. 2023. Gpt-4 vs. gpt-3. Authorea Preprints (2023).
[3] Raja Vavekanand and Kira Sam. 2024. Llama 3.1: An in-depth analysis of the

next-generation large language model.

2

	Abstract
	1 Introduction
	2 Our Approach
	3 Evaluations
	3.1 Experimental Setup
	3.2 Results: Inference Serving Performance and Memory Analysis

	4 Conclusions
	References

