
Divide Time into N
Shards

Distribute N Shards
Across m MPI Ranks

Query DB for Each Shard

All MPI Ranks Read
SQLite DB

Equal distribution of shards
among ranksParallel database queries by each

rank Save Results to Files

Read Files, Build Local
Timestamp Dictionaries

Storage of query results by each
rank

Creation of local dictionaries for
aggregation

Output of significant anomalies

MPI Reduce, Aggregate
by Timestamp

Compute Stats per Bin,
Identify Anomalies

Segmentation of timestamps for
parallel processing

Centralized aggregation of data

Statistical analysis and anomaly
detection

Independent data access by each
rank

Print Top 5 Anomalous
Bins

Scalable GPU Performance Variability Analysis framework
Ankur Lahiry1, Ayush Pokharel1, Seth Ockerman3, Amal Gueroudji2, Line Pouchard 4, Tanzima Z. Islam1

1Texas State University, 2Argonne National Laboratory, 3University of Wisconsin-Madison, 4Sandia National Laboratory
vty8@txstate.edu, ssu22@txstate.edu, sockerman@cs.wisc.edu, agueroudji@anl.gov, lcpouch@sandia.gov, tanzima@txstate.edu

This material is based upon work supported by the U.S. Department of Energy, Office of Science under Award Number DE-SC0023173.

Analyzing large-scale performance logs from GPU profilers often requires terabytes of memory and
hours of runtime, even for basic summaries. These constraints prevent timely insight and hinder the
integration of performance analytics into automated workflows. Existing analysis tools typically process
data sequentially, making them ill-suited for growing trace complexity and volume. We introduce a
distributed data analysis framework that scales with dataset size and compute availability. Instead of
treating the dataset as a single entity, our system partitions it into independently analyzable shards and
processes them concurrently across MPI ranks. This design reduces per-node memory pressure, avoids
central bottlenecks, and enables low-latency exploration of high-dimensional trace data. We apply the
framework to end-to-end Nsight Compute traces from real HPC and AI workloads and demonstrate its
utility in diagnosing performance variability and uncovering the impact of memory transfer latency on
GPU kernel behavior.

Abstract

Goal

v Design a scalable and distributed analysis of large-scale GPU traces.
v Analyze GPU performance variability to identify performance bottlenecks.

Background
Profiling Kernel Memory GPU # of samples
Rank 0 842054 107045 4 ~93M
Rank 1 842054 107099 4 ~93M
Rank 2 842054 107045 4 ~93M
Rank 3 842054 107045 4 ~93M

Design

Figure: Data Generation

Calculate Statistics
Read Files and Bin

Samples
Generate Shared

Dictionary

Distribute Files Aggregate
Information

Select Anomalous
Timestamps

Figure: Data Aggregation

Result
Result

Future Work

v Improve the performance bottleneck of the
pipeline by removing the I/O operations like
file read or saving to the parquet files

v Analyze root cause for the variance in kernel

References

https://docs.nvidia.com/nsight-
compute/ProfilingGuide/index.html
https://mpi4py.readthedocs.io/en/stabl
e/

v Identify relevant sqlite3 tables and extract kernel execution timestamps.
v Determine the minimum and maximum kernel time to define the full-time range.
v Split the time range into N shards, distribute them across P processes,
v Save each shard to a Parquet file.

Data Generation:

Data Aggregation:
v Initialize a shared dictionary with timestamps as keys to organize samples.
v Assign each process N/P shards of data for parallel reading.
v Processes read their files and bin the samples based on kernel execution time into the

shared dictionary.
v Aggregate binned data per rank to construct a complete view of the trace distribution.
v Perform statistical analysis on key columns to identify and rank the top K anomalous

timestamps for further investigation.

Figure 1: Memory Stall Duration vs Elapsed Time. The figure presents the variance in memory
stall duration over time across four MPI ranks. The top two subplots correspond to Rank 0 and
Rank 1, while the bottom two show Rank 2 and Rank 3. For each rank, the data is segmented
into time bins of 1-second intervals, totaling up to 601 bins. Within each bin, the variance of
memory stall durations is calculated and plotted to show the variability in memory stall.

Figure 2: A parallel co-ordinate to visualize memory stall in Rank 2 for the top 5% of the highest
stall duration in the bins. It shows the relation between the transfer size, copy kind and stall
duration. Most of the high memory stalls happens in Host-to-device. The transfer sizes of 4
millions bytes results in Host-to-Device copy kind which results in high stall duration.

of

 M
PI

 R
an

ks

Time in seconds

Left Figure shows Computation time
over the MPI ranks for generating
figure 1.

We see the speedup is around 1.8 ~ 2x
if we double the number of MPI ranks.

v Achieves near-perfect scalability for analyzing large-scale data.
v Identified specific performance metrics responsible for memory stalls.

Identify
Potential

Tables

Identify Kernel
Time Range

Divide
Timestamp
with Shards

Process Evenly
Divided Shards

Save Shards to
Parquet Files

Determine the
minimum and

maximum kernel
time

Distribute chunks
evenly among

processes

Save each shard as
a parquet fileDetermine relevant

tables for analysis
Divide the

timestamp into N
shards

Host to Device ->
high stall duration.

4 Million transfer size
->Host-to-Device ->high
stall duration

m
em

or
y

st
al

l d
ur

at
io

n

m
em

or
y

st
al

l d
ur

at
io

n
m

em
or

y
st

al
l d

ur
at

io
n

m
em

or
y

st
al

l d
ur

at
io

n

Potential memory stall

Elapsed Time in seconds
Elapsed Time in seconds

Elapsed Time in seconds Elapsed Time in seconds

The figure shows the boxplot for the
memory stall duration variance across 4
ranks. Time bins with high variance in the
boxplot indicates the high memory stall
duration variance.

Task Decomposition

memory_duration = (mem_end -
mem_start)
kernel_duration = (kernel_end -
kernel_start)
memory_stall_duration = max(0,
memory_duration -
kernel_duration)

mailto:vty8@txstate.edu
mailto:ssu22@txstate.edu
mailto:sockerman@cs.wisc.edu
mailto:agueroudji@anl.gov
mailto:lcpouch@sandia.gov
mailto:tanzima@txstate.edu
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html
https://mpi4py.readthedocs.io/en/stable/
https://mpi4py.readthedocs.io/en/stable/

