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Analyzing large-scale performance logs from GPU profilers often requires terabytes of memory and 
hours of runtime, even for basic summaries. These constraints prevent timely insight and hinder the 
integration of performance analytics into automated workflows. Existing analysis tools typically process 
data sequentially, making them ill-suited for growing trace complexity and volume. We introduce a 
distributed data analysis framework that scales with dataset size and compute availability. Instead of 
treating the dataset as a single entity, our system partitions it into independently analyzable shards and 
processes them concurrently across MPI ranks. This design reduces per-node memory pressure, avoids 
central bottlenecks, and enables low-latency exploration of high-dimensional trace data. We apply the 
framework to end-to-end Nsight Compute traces from real HPC and AI workloads and demonstrate its 
utility in diagnosing performance variability and uncovering the impact of memory transfer latency on 
GPU kernel behavior.

Abstract

Goal

v Design a scalable and distributed analysis of large-scale GPU traces.
v Analyze GPU performance variability to identify performance bottlenecks.

Background
Profiling Kernel Memory GPU # of samples
Rank 0 842054 107045 4 ~93M
Rank 1 842054 107099 4 ~93M
Rank 2 842054 107045 4 ~93M
Rank 3 842054 107045 4 ~93M
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Future Work

v Improve the performance bottleneck of the 
pipeline by removing the I/O operations like 
file read or saving to the parquet files

v Analyze root cause for the variance in kernel
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v Identify relevant sqlite3 tables and extract kernel execution timestamps.
v Determine the minimum and maximum kernel time to define the full-time range.
v Split the time range into N shards, distribute them across P processes, 
v Save each shard to a Parquet file.

Data Generation:

Data Aggregation:
v Initialize a shared dictionary with timestamps as keys to organize samples.
v Assign each process N/P shards of data for parallel reading.
v Processes read their files and bin the samples based on kernel execution time into the 

shared dictionary.
v Aggregate binned data per rank to construct a complete view of the trace distribution.
v Perform statistical analysis on key columns to identify and rank the top K anomalous 

timestamps for further investigation.

Figure 1: Memory Stall Duration vs Elapsed Time. The figure presents the variance in memory 
stall duration over time across four MPI ranks. The top two subplots correspond to Rank 0 and 
Rank 1, while the bottom two show Rank 2 and Rank 3. For each rank, the data is segmented 
into time bins of 1-second intervals, totaling up to 601 bins. Within each bin, the variance of 
memory stall durations is calculated and plotted to show the variability in memory stall.

Figure 2: A parallel co-ordinate to visualize memory stall in Rank 2 for the top 5% of the highest 
stall duration in the bins. It shows the relation between the transfer size, copy kind and stall 
duration. Most of the high memory stalls happens in Host-to-device. The transfer sizes of 4 
millions bytes results in Host-to-Device copy kind which results in high stall duration.
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Left Figure shows Computation time 
over the MPI ranks for generating 
figure 1.

We see the speedup is around 1.8 ~ 2x 
if we double the number of MPI ranks.

v Achieves near-perfect scalability for analyzing large-scale data.
v Identified specific performance metrics responsible for memory stalls.
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The figure shows the boxplot for the 
memory stall duration variance across 4 
ranks. Time bins with high variance in the 
boxplot indicates the high memory stall 
duration variance.

Task Decomposition

memory_duration = (mem_end - 
mem_start)
kernel_duration = (kernel_end -
kernel_start)
memory_stall_duration = max(0, 
memory_duration - 
kernel_duration )
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