
Bridging LLMs and HPC: A Modular

MCP-IOWarp Framework for Scalable

Task Execution

Aum Vinodchandra Sathwara Jaime Cernuda Garcia Luke Logan

Anthony Kougkas Xian-He Sun

asathwara@hawk.iit.edu, jcernudagarcia@hawk.iit.edu,

llogan@hawk.iit.edu, akougkas@iit.edu, sun@iit.edu

Motivation

Different Platform: LLM pipelines assume cloud VMs, while

HPC tasks run via batch schedulers and parallel filesystems.

Gaps in tools: LangChain, OpenAI function calls, and

SmartSim solve pieces but lack a complete LLM → HPC

bridge.

Prompt Overhead: In-prompt shell commands increase token

counts and raise parse-error and timeout rates.

Research need: Researchers require a reliable, auditable link

from chat-style planning to HPC execution without rewriting

code for each backend.

Proposed Solution

We present MCP-IOWarp, a set of dedicated MCP servers that

sit between the LLM and the HPC system. Each server im-

plements a single capability and exposes it through a compact

JSON-RPC contract. The LLM issues a high-level request; the

matching MCP server forwards it to the cluster via the native

scheduler or storage API, captures the outcome, and returns a

structured JSON reply together with provenance metadata. Be-

cause the contract remains unchanged, adopting a new HPC

back-end requires only redeploying servers that bind the same

MCP methods to that system.

Architecture & Methodology

LLM → MCP client → capability-MCP server(s) → IOWarp /

other HPC backend

There are two deployment methods. Local—all modules in one

process using stdio JSON-RPC. Cluster—containerised clients

communicate via HTTP/SSE with web-based MCP servers.

MCP client serialises and validates requests; MCP server(s)

translate JSON-RPC to scheduler/storage calls and log prove-

nance; Backend executes tasks (IOWarp in our evaluation).

Each invocation records status, latency, and token counts; these

logs support Fig. 3’s success-rate and variability metrics, where

failures originate from schema violations or 5 s backend time-

outs.

MCP-IOWarp Tool Example

Figure 1: Server-side MCP-IOWarp tool exposing the read file method

MCP-IOWarp Client Execution

Figure 2: LLM invoking read; MCP-IOWarp returns file content and provenance.

Evaluation Methodology

We tested one LLM under three execution modes: (1) prompt-

embedded commands, (2) function-call configuration, and (3)

MCP–IOWarp JSON-RPC.

Workload. Five file-I/O tasks (list directory, append file, read
file, create script, run script) were run 10 times each (50

invocations per mode) on a fixed Docker image with a frozen

IOWarp backend.

Failure rule. An invocation counts as failed if the JSON schema

is rejected, the backend exceeds a 5 s timeout, or the outputs do

not conform to the expected format or content.

Metrics captured. Success/Failure rate, median latency, 95
th
-

percent latency band, and tokens per task.

Figure 3: Success and variability across clients.

Conclusion

MCP-IOWarp cleanly separates language-model planning from

HPC execution through JSON-RPC servers. Compared with

prompt-embedded and function-call modes, it increases task

success from 20 %, 40 % to 80 % and reduces median latency

by roughly 35 %. Because the JSON contract is backend-

agnostic, the same method bindings can target additional HPC

systems without prompt changes. Future work will expand the

server catalogue, optimise transport for lower latency, and eval-

uate full scientific workflows.


