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Rare Earth Elements (REE) are crucial for advanced technologies such as 
renewable energy, electronics, and defense systems. However, traditional 
methods for quantifying REE concentrations rely heavily on costly and 
time-consuming chemical analyses. 
The objective of this research is to assess whether multiphysical sensor 
data can serve as an efficient, reliable alternative to direct chemical 
measurements for predicting REE concentrations in coal mine tailings. 
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Data Analysis & Processing 

Mine tailing samples from two coal mining sites;
Site 1 (coal refuse)
Site 2 (coal ash)

78 total samples (in two batches: 28 initial samples and 50 samples in the 
second run) were analyzed by Conti Lab for concentration of eight REE 
elements – Sc, Y, La, Ce, Pr, Nd, Tb, and Dy.

REE Data

Four different sensor measurements over area:
● Hyperspectral Imaging: Reflectance spectrum ranging from 200nm 

to 1000nm (at spacing of 0.33nm)
● Radiation Sensors: Raw and averaged gross decay event count
● Magnetometers: Recorded magnetic flux density.
● Electromagnetic Interference (EMI) Sensors: Soil conductivity at various 

depths (0.25-4.5 meters, plus infinite depth).
For a total of >2000 features, the vast majority of which are hyperspectral

 

Sensor Data

Data Challenges

Models & Techniques 
Due to the low number of samples, simpler machine learning models were 
selected to ensure effective convergence and robust predictions - we 
apply the following three models, which are all relatively simple models 
that can converge with small amounts of data:
● Multilayer Perceptron (MLP)
● Gradient Boosting (XGBoost)
● Random Forest
MSE loss with LOO cross-validation was applied.

Feature Engineering

Future Work

Deviations between sites: The two sites show very different ranges of REE 
concentration values – Difference in petrological composition? Or some 
other factor (e.g. the state difference in tailings)?

Deviations in measurement: different labs, and even different batches w.r.t. 
the same lab seem to have differences in range even within the same site.

Principal Component Analysis (PCA) was utilized to reduce dimensionality 
● Reduced co-linearity significantly improved XGBoost model, although 

effect on other models was limited.
● PCA also showed that EMI seems to have the largest effect on 

components, followed by hyperspectral.

The limited sample size and number of sites leave several open 
questions:
● Can models trained on one site or tailing type be transferred to others?
● Is it valid to combine data from different sites or tailing states? If not, can 

those differences be reliably accounted for?
● How reliable are lab measurements across different batches or facilities? 

What level of variability is introduced by the measurement process, and 
how should this uncertainty be factored into modeling?

To address these challenges and better assess model generalizability, 
obtaining (and measuring) samples from diverse sites will be essential.

Figure 3: Distribution of Nd concentration for Site 
2 measured between two batches w.r.t. Lab 1. 
While the mean is similar, the standard deviation has 
changed significantly.

Figure 1: Sensor measurement points and ground sample locations across Site 1 (left) and 
2 (right). Gaps in hyperspectral data (e.g., west side of Site 2) and limited spatial coverage for 
EMI and radiation sensors are visible.

Figure 4: Distribution of Nd concentration 
values between different labs. In addition to 
the difference in value ranges, the relationship 
between them is very weak.

Figure 2: Distribution of REE concentrations between the two 
sites. The ranges are clearly distinct, with little overlap. 

Figure 5: LOO results w.r.t first batch  for Site 1 and 
Nd before (above) and after (below) PCA. A substantial 
improvement is seen for XGBoost.

Batch Differences

Figure 6: PCA loadings. First component 
(~50% of total variance) is  dictated by EMI, 
and the second (~20%) by hyperspectral.

Figure 7: Pearson correlation for second-batch test 
data using models trained on first-batch only vs. 
combined data. Accuracy improves slightly with 
second-batch data included in training, but overall remains 
low.

Models trained on the first batch of 
samples performed reasonably well 
when tested on data from the same 
batch. However, their predictive 
accuracy dropped significantly when 
applied to the second batch.
Adding samples from the second batch 
into the training set led to some 
improvement, but overall performance 
remained limited.
This drop in transferability may reflect 
differences in measurement 
procedures, sample handling, or other 
batch-specific factors. However, further 
testing is needed to clearly identify the 
source of variability and assess 
whether it is due to measurement 
inconsistencies or underlying 
differences in the samples themselves.


