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Introduction

Modern scientific discovery is increasingly data-driven, with

AI-assisted workflows generating massive, complex data flows

across simulations, analyses, and instruments [2]. These work-

flows rely on shared parallel file systems, which often become

performance bottlenecks due to contention and inefficient data

movement [1]. Existing I/O-aware schedulers often lack insight

into workflow-level patterns like producer–consumer relation-

ships and file reuse, limiting their ability to optimize end-to-end

performance. To address this:

We present a workflow-centric methodology to analyze I/O

behavior by linking workflow context with I/O metrics.

We apply this to two HPC workflows, identifying

producer-consumer patterns and bottlenecks.

We uncover workflow-specific I/O insights and optimization

opportunities.

Approach

We combine workflow dataflow DAG with multidimensional vi-

sualization to uncover dataflow patterns critical for I/O-aware

scheduling. It consists of the following three steps:

1. Dataflow DAG: We construct a task-to-file DAG by extracting

input/output definitions from a workflow schema (e.g.,

Pegasus DAX or JSON), capturing data flow between tasks

via shared files and highlighting producer–consumer

dependencies.

2. Multidimensional Visualization: We visualize I/O metrics

such as bandwidth and dataflow volume using operation

count–centric plots, grouped by tasks, files, and

producer–consumer pairs.

3. Workflow Pattern Characterization and Analysis: We map

core dataflow patterns onto the workflow to enable pattern

recognition and guide optimization strategies.

Workflow Centric I/O Metrics

Task Group: Tasks of the same type (could be executed in

parallel) are grouped to compare I/O statistics.

Producer-Consumer (P-C) Group: A core metric capturing

data dependencies between producer (write) and consumer

(read) task groups, enabling insight into I/O behavior, data

placement, and task coordination.

Workflow: A set of interdependent tasks coordinated by a

workflow system or script, typically run within a

batch-scheduled HPC job with data dependencies.

Workflow Stages: Logical units of execution in a workflow,

where stage order reflects task and file access sequence.

File Group: Files are grouped by similar types or extensions.

Dataflow: The total amount of data (bytes) transferred

between a task and a file.

Pattern Description

1 → 1 One producer writes data read by one consumer.

1 → n One producer’s data is shared across multiple consumers.

n → 1 Several producers write parts consumed by one task.

n → n Multiple producers and consumers with shared I/O.

Table 1. Core p-c I/O patterns in workflow interactions.
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Workflow Analysis: Seismology
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Figure 1: Seismology
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Figure 2: Group by P-C Pairs
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Figure 5: Group by File
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Figure 6: Group by File

1. IterDe (producer) and siftSTF (consumer): n → 1 pattern.
2. Write performance variation under high parallelism.

3. Intra-task variation in I/O patterns and performance.

Optimization: Reduce write contention by distributing parallel

tasks; improve intra-task read performance through prefetching

of frequently accessed files.

Workflow Analysis: 1000 Genome
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Figure 7: Seismology Dataflow DAG
101 103 105

Operation Count (log)

0

2000

4000

6000

8000

I/O
 B

an
dw

id
th

 (M
B/

s)

Task Name
indiv
freq
mut_olp
sift
ind_mer

Task Name
indiv
freq
mut_olp
sift
ind_mer

Figure 8: Group by Task
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Figure 9: Group by P-C Pairs
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Figure 10: Group by File

1. Good Performance I/O patterns: n → n, 1 → n, and n → 1.
2. Inter-stage variation in I/O patterns and performance.

3. Same files different I/O patterns and performance.

Optimization: Forecast I/O demands for workload planning and

storage selection; use storage systems optimized for small, ran-

dom I/O operations.

Conclusion

Converged workflows integrate simulation, analytics, and AI,

creating complex dataflows with diverse I/O demands. Support-

ing them requires storage systems tuned to these varied needs.

Our producer–consumer analysis revealed insights that are oth-

erwise difficult to uncover within workflow I/O, highlighting the

need to co-design storage and scheduling for workflows.
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