Gnosis Research Center

Analyzing I/O Patterns and Dataflow in HPC Workflows

Meng Tang Luanzheng Guo Nathan R. Tallent Anthony Kougkas Xian-He Sun

mtang11@hawk.iit.edu, lenny.guo@pnnl.gov, nathan.tallent@pnnl.gov, akougkas@iit.edu, and sun@iit.edu

Introduction

Modern scientific discovery is increasingly data-driven, with Al-assisted workflows generating massive, complex data flows across simulations, analyses, and instruments [2]. These workflows rely on shared parallel file systems, which often become performance bottlenecks due to contention and inefficient data movement [1]. Existing I/O-aware schedulers often lack insight into workflow-level patterns like producer–consumer relationships and file reuse, limiting their ability to optimize end-to-end performance. To address this:

Workflow Analysis: Seismology

- We present a workflow-centric methodology to analyze I/O behavior by linking workflow context with I/O metrics.
- We apply this to two HPC workflows, identifying producer-consumer patterns and bottlenecks.
- We uncover workflow-specific I/O insights and optimization opportunities.

Approach

We combine workflow dataflow DAG with multidimensional visualization to uncover dataflow patterns critical for I/O-aware scheduling. It consists of the following three steps:

- Dataflow DAG: We construct a task-to-file DAG by extracting input/output definitions from a workflow schema (e.g., Pegasus DAX or JSON), capturing data flow between tasks via shared files and highlighting producer–consumer dependencies.
- Multidimensional Visualization: We visualize I/O metrics such as bandwidth and dataflow volume using operation count–centric plots, grouped by tasks, files, and producer–consumer pairs.

IterDe (producer) and siftSTF (consumer): n → 1 pattern.
 Write performance variation under high parallelism.
 Intra-task variation in I/O patterns and performance.
 Optimization: Reduce write contention by distributing parallel tasks; improve intra-task read performance through prefetching of frequently accessed files.

Workflow Analysis: 1000 Genome

3. Workflow Pattern Characterization and Analysis: We map core dataflow patterns onto the workflow to enable pattern recognition and guide optimization strategies.

Workflow Centric I/O Metrics

- Task Group: Tasks of the same type (could be executed in parallel) are grouped to compare I/O statistics.
- Producer-Consumer (P-C) Group: A core metric capturing data dependencies between producer (write) and consumer (read) task groups, enabling insight into I/O behavior, data placement, and task coordination.
- Workflow: A set of interdependent tasks coordinated by a workflow system or script, typically run within a batch-scheduled HPC job with data dependencies.
- Workflow Stages: Logical units of execution in a workflow, where stage order reflects task and file access sequence.
- File Group: Files are grouped by similar types or extensions.
 Dataflow: The total amount of data (bytes) transferred between a task and a file.

1. Good Performance I/O patterns: $n \rightarrow n$, $1 \rightarrow n$, and $n \rightarrow 1$.

- 2. Inter-stage variation in I/O patterns and performance.
- 3. Same files different I/O patterns and performance.

Optimization: Forecast I/O demands for workload planning and storage selection; use storage systems optimized for small, random I/O operations.

Pattern	Description
$1 \rightarrow 1$	One producer writes data read by one consumer.
$1 \rightarrow n$	One producer's data is shared across multiple consumers.
$n \to 1$	Several producers write parts consumed by one task.
$n \rightarrow n$	Multiple producers and consumers with shared I/O.
Table 1. Core p-c I/O patterns in workflow interactions.	

References

- [1] Jean Luca Bez, Suren Byna, and Shadi Ibrahim.
 I/o access patterns in hpc applications: A 360-degree survey.
 ACM Computing Surveys, 56(2):1–41, 2023.
- [2] Harsh Bhatia, Francesco Di Natale, Joseph Y Moon, Xiaohua Zhang, Joseph R Chavez, Fikret Aydin, Chris Stanley, Tomas Oppelstrup, Chris Neale, Sara Kokkila Schumacher, et al. Generalizable coordination of large multiscale workflows: challenges and learnings at scale. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 1–16, 2021.

Conclusion

Converged workflows integrate simulation, analytics, and AI, creating complex dataflows with diverse I/O demands. Supporting them requires storage systems tuned to these varied needs. Our producer–consumer analysis revealed insights that are otherwise difficult to uncover within workflow I/O, highlighting the need to co-design storage and scheduling for workflows.

Acknowledgments

This research is supported by the U.S. Department of Energy (DOE) through the Office of Advanced Scientific Computing Research's "Orchestration for Distributed & Data-Intensive Scientific Exploration"; the "Cloud, HPC, and Edge for Science and Security" LDRD at Pacific Northwest National Laboratory; and partly by the National Science Foundation under Grants no. CSSI-2104013 and OAC-2313154.