
Analyzing I/O Patterns and Dataflow in

HPCWorkflows

Meng Tang Luanzheng Guo Nathan R. Tallent Anthony Kougkas

Xian-He Sun

mtang11@hawk.iit.edu, lenny.guo@pnnl.gov, nathan.tallent@pnnl.gov,

akougkas@iit.edu, and sun@iit.edu

Introduction

Modern scientific discovery is increasingly data-driven, with

AI-assisted workflows generating massive, complex data flows

across simulations, analyses, and instruments [2]. These work-

flows rely on shared parallel file systems, which often become

performance bottlenecks due to contention and inefficient data

movement [1]. Existing I/O-aware schedulers often lack insight

into workflow-level patterns like producer–consumer relation-

ships and file reuse, limiting their ability to optimize end-to-end

performance. To address this:

We present a workflow-centric methodology to analyze I/O

behavior by linking workflow context with I/O metrics.

We apply this to two HPC workflows, identifying

producer-consumer patterns and bottlenecks.

We uncover workflow-specific I/O insights and optimization

opportunities.

Approach

We combine workflow dataflow DAG with multidimensional vi-

sualization to uncover dataflow patterns critical for I/O-aware

scheduling. It consists of the following three steps:

1. Dataflow DAG: We construct a task-to-file DAG by extracting

input/output definitions from a workflow schema (e.g.,

Pegasus DAX or JSON), capturing data flow between tasks

via shared files and highlighting producer–consumer

dependencies.

2. Multidimensional Visualization: We visualize I/O metrics

such as bandwidth and dataflow volume using operation

count–centric plots, grouped by tasks, files, and

producer–consumer pairs.

3. Workflow Pattern Characterization and Analysis: We map

core dataflow patterns onto the workflow to enable pattern

recognition and guide optimization strategies.

Workflow Centric I/O Metrics

Task Group: Tasks of the same type (could be executed in

parallel) are grouped to compare I/O statistics.

Producer-Consumer (P-C) Group: A core metric capturing

data dependencies between producer (write) and consumer

(read) task groups, enabling insight into I/O behavior, data

placement, and task coordination.

Workflow: A set of interdependent tasks coordinated by a

workflow system or script, typically run within a

batch-scheduled HPC job with data dependencies.

Workflow Stages: Logical units of execution in a workflow,

where stage order reflects task and file access sequence.

File Group: Files are grouped by similar types or extensions.

Dataflow: The total amount of data (bytes) transferred

between a task and a file.

Pattern Description

1 → 1 One producer writes data read by one consumer.

1 → n One producer’s data is shared across multiple consumers.

n → 1 Several producers write parts consumed by one task.

n → n Multiple producers and consumers with shared I/O.

Table 1. Core p-c I/O patterns in workflow interactions.

References

[1] Jean Luca Bez, Suren Byna, and Shadi Ibrahim.

I/o access patterns in hpc applications: A 360-degree survey.

ACM Computing Surveys, 56(2):1–41, 2023.

[2] Harsh Bhatia, Francesco Di Natale, Joseph Y Moon, Xiaohua Zhang, Joseph R Chavez, Fikret Aydin, Chris

Stanley, Tomas Oppelstrup, Chris Neale, Sara Kokkila Schumacher, et al.

Generalizable coordination of large multiscale workflows: challenges and learnings at scale.

In Proceedings of the International Conference for High Performance Computing, Networking, Storage

and Analysis, pages 1–16, 2021.

Workflow Analysis: Seismology

IterDe

decon.out

siftSTF

Good
-fits.tar.gz

Stage 1 Stage 2

egf.lht,
mshock.lht

Figure 1: Seismology

Dataflow DAG

0e+002e+044e+046e+048e+04
Operation Count

0e+00
4e+05

8e+05
1e+06

2e+06

I/O
 Ban

dw
idt

h (
MB/s)

0
200
400
600

Da
ta

flo
w

(M
B)

Producer [Files] Consumer
initial_data(0) [egf.lht,mshock.lht] IterDe(99) [1-1]
IterDe(99) [decon.out] siftSTF(1) [n-1]
siftSTF(1) [good-fits.tar.gz] final_data(0) [1-1]

Producer [Files] Consumer
initial_data(0) [egf.lht,mshock.lht] IterDe(99) [1-1]
IterDe(99) [decon.out] siftSTF(1) [n-1]
siftSTF(1) [good-fits.tar.gz] final_data(0) [1-1]

Figure 2: Group by P-C Pairs

0 500
Operation Count

0

1

2

I/O
 B

an
dw

id
th

 (M
B/

s) 1e5

Task Name
siftSTF
IterDe

Task Name
siftSTF
IterDe

Figure 3: Group by

Tasks

0 250 500 750
Operation Count

0

50000

100000

150000

200000

I/O
 B

an
dw

id
th

 (M
B/

s) I/O Type
Seq W
Rand W
Seq R
Rand R

Dataflow
0.33 MB
1.61 MB

Dataflow
0.33 MB
1.61 MB

Figure 4: Group by OP

Type.

0 200 400
600

800
Operation Count

0
50000

100000
150000

200000

I/O
 Ban

dw
idt

h (
MB/s)

0.0

0.5

1.0

1.5

Da
ta

flo
w

(M
B)File Group

decon.out
egf.lht
good-fits.tar.gz
mshock.lht

Figure 5: Group by File

0 250 500 750
Operation Count

0.0

0.5

1.0

1.5

2.0 1e5

File Group
decon.out
egf.lht
good-fits.tar.gz
mshock.lht

File Group
decon.out
egf.lht
good-fits.tar.gz
mshock.lht

Figure 6: Group by File

1. IterDe (producer) and siftSTF (consumer): n → 1 pattern.
2. Write performance variation under high parallelism.

3. Intra-task variation in I/O patterns and performance.

Optimization: Reduce write contention by distributing parallel

tasks; improve intra-task read performance through prefetching

of frequently accessed files.

Workflow Analysis: 1000 Genome

chr1.tar.gz

indiv chr1n.tar.gz
ind_mer

chr1n.tar.gz

freq

mut_olp

chr1n.tar.gz
Stage 1 Stage 2 Stage 3

siftALL.chr.p3.vcf sifted.txt

Figure 7: Seismology Dataflow DAG
101 103 105

Operation Count (log)

0

2000

4000

6000

8000

I/O
 B

an
dw

id
th

 (M
B/

s)

Task Name
indiv
freq
mut_olp
sift
ind_mer

Task Name
indiv
freq
mut_olp
sift
ind_mer

Figure 8: Group by Task

0e+005e+071e+082e+08Op Count

1e+05
2e+05

3e+05

I/O
 BW

 (M
B/s)

0e+00
5e+05
1e+06
2e+06
2e+06

Da
ta

flo
w

(M
B)

Producer [Files] Consumer
indiv(300) [chr-.tar.gz] ind_mer(10) [n-n]
ind_mer(10) [chrn.tar.gz] mut_olp(10) [1-n]
ind_mer(10) [chrn.tar.gz] freq(10) [1-n]
sift(10) [sifted.txt] mut_olp(10) [1-n]
sift(10) [sifted.txt] freq(10) [1-n]
initial_data(0) [chr-.tar.gz] indiv(300) [n-1]
initial_data(0) [ALL.chr.phase3.vcf] sift(10) [n-n]
freq(10) [chr-.tar.gz] final_data(0) [1-1]
mut_olp(10) [chr-.tar.gz] final_data(0) [1-1]

Producer [Files] Consumer
indiv(300) [chr-.tar.gz] ind_mer(10) [n-n]
ind_mer(10) [chrn.tar.gz] mut_olp(10) [1-n]
ind_mer(10) [chrn.tar.gz] freq(10) [1-n]
sift(10) [sifted.txt] mut_olp(10) [1-n]
sift(10) [sifted.txt] freq(10) [1-n]
initial_data(0) [chr-.tar.gz] indiv(300) [n-1]
initial_data(0) [ALL.chr.phase3.vcf] sift(10) [n-n]
freq(10) [chr-.tar.gz] final_data(0) [1-1]
mut_olp(10) [chr-.tar.gz] final_data(0) [1-1]

Figure 9: Group by P-C Pairs

101 103 105

Operation Count (log)

0

1000

2000

3000

4000

5000

6000

7000

8000

I/O
 B

an
dw

id
th

 (M
B/

s)

File Group
chr-.tar.gz
ALL.chr.250000.vcf
columns.txt
chrn.tar.gz
sifted.txt
ALL.chr.phase3_.vcf

File Group
chr-.tar.gz
ALL.chr.250000.vcf
columns.txt
chrn.tar.gz
sifted.txt
ALL.chr.phase3_.vcf

Figure 10: Group by File

1. Good Performance I/O patterns: n → n, 1 → n, and n → 1.
2. Inter-stage variation in I/O patterns and performance.

3. Same files different I/O patterns and performance.

Optimization: Forecast I/O demands for workload planning and

storage selection; use storage systems optimized for small, ran-

dom I/O operations.

Conclusion

Converged workflows integrate simulation, analytics, and AI,

creating complex dataflows with diverse I/O demands. Support-

ing them requires storage systems tuned to these varied needs.

Our producer–consumer analysis revealed insights that are oth-

erwise difficult to uncover within workflow I/O, highlighting the

need to co-design storage and scheduling for workflows.

Acknowledgments

This research is supported by the U.S. Department of Energy (DOE) through the Office of Advanced Scientific

Computing Research’s “Orchestration for Distributed & Data-Intensive Scientific Exploration’’; the “Cloud, HPC,

and Edge for Science and Security” LDRD at Pacific Northwest National Laboratory; and partly by the National

Science Foundation under Grants no. CSSI-2104013 and OAC-2313154.

