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Introduction Workflow Analysis: Seismology
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We combine workflow dataflow DAG with multidimensional vi-
sualization to uncover dataflow patterns critical for I/O-aware
scheduling. It consists of the following three steps:

1. Dataflow DAG: We construct a task-to-file DAG by extracting
input/output definitions from a workflow schema (e.qg.,
Pegasus DAX or JSON), capturing data flow between tasks
via shared files and highlighting producer-consumer

1. IterDe (producer) and siftSTF (consumer): n — 1 pattern.

2. Write performance variation under high parallelism.

3. Intra-task variation in 1/O patterns and performance.
Optimization: Reduce write contention by distributing parallel
tasks; improve intra-task read performance through prefetching
of frequently accessed files.

dependencies. o | Workflow Analysis: 1000 Genome
2. Multidimensional Visualization: We visualize 1/O metrics
such as bandwidth and dataflow volume using operation ot ol o %
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count—centric plots, grouped by tasks, files, and
producer—-consumer pairs.

3. Workflow Pattern Characterization and Analysis: We map
core dataflow patterns onto the workflow to enable pattern
recognition and guide optimization strategies.
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- Workflow: A set of interdependent tasks coordinated by a 1. Good Performance 1/O patterns: n —n, 1 — n, and n — 1.
workflow system or script, typically run within a 2. Inter-stage variation in 1/0O patterns and performance.
batch-scheduled HPC job with data dependencies. 3. Same files different I/O patterns and performance.
- Workflow Stages: Logical units ot execution in a workflow, Optimization: Forecast |/O demands for workload planning and
where stage order reflects task and tile access sequence. storage selection; use storage systems optimized for small, ran-
- File Group: Files are grouped by similar types or extensions. dom I/O operations.
- Dataflow: The total amount of data (bytes) transferred .
between a task and a file. Conclusion
Pattern Description
1 — 1 One producer writes data read by one consumer. Converged workflows integrate simulation, analytics, and Al,
1 —n One producer's data is shared across multiple consumers. creating complex dataflows with diverse [/O demands. Support-
n—1 | Several producers write parts consumed by one task. ing them requires storage systems tuned to these varied needs.
n—mn  Multiple producers and consumers with shared I/0. Our producer-consumer analysis revealed insights that are oth-

Table 1. Core p-c I/O patterns in workflow interactions. . L. 2 . ) )
erwise difficult to uncover within workflow 1/O, highlighting the

References need to co-design storage and scheduling for workflows.
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