
ChronoLog & AI: A Scalable,

Collaborative Solution for LLM

Conversation Logging & Retrieval

Soham Sonar Jaime Cernuda Dr. Anthony Kougkas Dr. Xian-He

Sun

ssonar2@hawk.iit.edu, jcernudagarcia@hawk.iit.edu,

akougkas@iit.edu, sun@iit.edu

Introduction

The widespread use of Large Language Models (LLMs) has led

to a surge in conversational data across research and industry.

Capturing and managing these interactions is essential for re-

producibility, debugging, and auditing, yet most current systems

rely on proprietary or cloud-based infrastructure not designed

for high throughput, AI specific logging. To address this, we ex-

plore the use of ChronoLog, a high-performance, HPC-oriented

distributed log store with precise physical time ordering, multi-

user concurrent access, and seamless read integration, making

it ideal for capturing fast, structured data such as AI conversa-

tions.

On top of the ChronoLog, we built -

A Python Inference which logs prompt-response pairs from

local and remote LLM models directly into ChronoLog. It

supports real time logging and time range retrieval for

seamless integration into workflows.

A Model Context Protocol server which is a service that

implements a standardized interface for managing and

relaying contextual data and tool interactions between

language models and external systems. By integrating it with

ChronoLog and exposing a uniform protocol, it enables

context-aware retrieval and cross-platform communication.

Figure 1: CollaborativeWrite/Read using Python

Inference and Mcp Server.

Methodology

1. ChronoLog: Forms the core of our logging infrastructure, built

for high-throughput, distributed environments. It organizes

data into chronicles (streams) and stories (sessions),

recording events as key-value pairs with physical timestamps

for globally ordered logging. In-memory writes ensure speed

and long term durability.

2. Python inference pipeline: Prompts are issued to either a

local model (LLAMA 3.2) or a remote model through API

(ChatGPT 4.0), and the prompt-response pair is logged in real

time into ChronoLog. Logs can be retrieved using a time

range reader API for offline analysis.

3. The MCP Server: Extends this into a robust API service using

FastMCP, exposing tools to start sessions, log interactions,

retrieve archived logs, and end sessions. It supports real time

and contextual querying across conversations, enabling

reproducible and collaborative AI workflows. This server can

be easily integrated with any open source LLM Client

Applications (Claude AI, Microsoft Copilot) or a Custom LLM

Client using Gemini.

Results

Figure 2(a): Internal LLM

benchmark

Figure 2(b): External LLM

benchmark

Figure 3: ChronoLogWrite Performance

Observations: ChronoLog adds < 10% latency to internal and ex-

ternal LLM inference, and the Write tests show many 1 KB events

are latency‑bound, whereas 1 MB–1 GB batches saturate mem-

ory bandwidth and complete markedly faster.

Conclusion

We introduced ChronoLog as a unified backend for logging and

replaying LLM interactions, combining a Python interface with a

featured Model Context Protocol server. Experiments confirm

low latency overhead while sustaining high‑throughput ingest

and fast archival queries, even at multi gigabyte scales. Over-

all, our work lays the groundwork for reproducible, transparent,

and traceable AI workflows.


